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Abstract. A two-component system with diffusion, annihilation of particles of different 
types and reproduction and recombination of particles of the same type is considered. It 
is shown that if the initial concentrations of the reactants are equal, the existence of small 
density fluctuations leads to the formation of an extremely long-living metastable mozaic 
distribution of particles, where average concentrations largely exceed the mean-field values. 
I f  the initial concentrations differ significantly the relaxation has a slow power-law character. 
In the system of reduplicating particles annihilating with mobile and not self-reproducing 
non-ideal traps at long times the concentration of the particles grows (however small i t  
might be initially) while that of traps vanishes-in contrast with formal kinetics. 

The study of fluctuation kinetics in diffusion-controlled reactions attracts considerable 
attention. These effects are essential for the description of exciton migration and  
capture in molecular solids and  solutions, carrier and  defect annihilation in crystals, 
aggregation and coagulation processes and  survival problems in biology, ecology and 
synergetics. 

It has been shown (Balagurov and  Vaks 1973, Donsker and Varadhan 1975, 
Ovchinnikov and Zeldovich 1978, Burlatskii 1978, Zeldovich and  Ovchinnikov 1977, 
1978, Meakin and Stanley 1984, Berezhkovskii et a1 1986) that small thermodynamic 
fluctuations of the initial distribution of particles change the long-time asymptotics of 
density relaxation. Some of these results were later rederived (Grassberger and Procac- 
cia 1982, Kayser and Hubbard 1983, Toussaint and Wilczek 1983, Anacker er a1 1984, 
Kang and  Redner 1984, 1985, Sokolov 1986). Stationary fluctuation effects in 
bimolecular systems with external sources lead to stochastic segregation of reactants 
(Ovchinnikov and Burlatskii 1986, Burlatskii et al 1987, Anacker and Kopelman 1987, 
Zhang Yi-Cheng 1987). The Poisson fluctuations in the distribution of immobile traps 
after a long waiting period lead to an explosive growth of particle concentration for 
any non-zero (arbitrarily small) rate of particle reduplication (Burlatskii and Ovchin- 
nikov 1987). 

In this paper we study the influence of density fluctuations on the kinetic processes 
in bimolecular reaction systems with diffusion, pair annihilation of particles of different 
types, slow recombination of particles of one type, along with particle reproduction, 
and  also in systems with reduplicating particles and mobile non-ideal traps. For the 
case of equal initial concentrations of reactants it is shown that an  extremely long-living 
metastable state is formed so that the whole system is split into areas or  domains each 
consisting of only one type of particle. The average size of such clusters grows slowly 
(logarithmically) with time and  the mean densities largely exceed the predictions of 
mean-field theories. If the initial concentrations in this situation differ significantly, 
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the relaxation has a slow power-law character. We obtain another case if the concentra- 
tion of type B particles is much greater than that of type A, but the rate of reproduction 
for B equals zero. Then at long times the concentration of particles A will grow, while 
for B it will vanish-in contrast with formal kinetics that does not take fluctuations 
into account. 

In  the general case the reaction kinetics of the system under consideration are 
governed by the following equations: 

dA(r, f ) = D A C A ( r ,  f ) + k : C A ( r ,  f ) - k - C A ( r ,  f )CB(r,  l ) - a I C i ( r ,  f )  ( l a )  
c B ( r ,  t ) = D A c , ( r ,  t )+k:CB(r,  t ) - k - c A ( r ,  t ) c B ( r ,  t ) - a 2 c : ( r , t )  ( ~ b )  

where D is the diffusion coefficient and k : ,  k : ,  k - ,  a ' ,  a ,  are the rate constants 
corresponding to reproduction, annihilation and  recombination processes respectively. 

k:  = k: = k +  a l = a z = a  k->> a cOad << 1 

First, let us consider the symmetric case: 

c: = c; = CO 

( [ C A  ( r, 0) - c : I [ c B  ( r', O )  - 

([ CA ( r, 0 )  - c i  1 [ C A  ( r', 0) - c:]? = ([ CB ( r, 0 )  - 

c: = ( C A (  r, 0 ) )  c i  = (cB(r ,  0 ) )  
= 

[ CB ( r ' 9  0 )  - cos]) = C O S  ( r - r '1 
where a is the particle (or  the annihilation) radius. The initial density distribution is 
of the Poissonnian type with mean co. 

In the framework of formal kinetics the evolution of the system includes two stages. 
First, concentrations relax to 

cT = k + ( k - +  a) - ' .  ( 2 )  
For k - >  a this state is unstable with respect to fluctuations of the total concentra- 

tion, so after a long waiting time period (greater than the quantity (cT V) k') where 
Vis the volume of the system, there occurs a transition to the state of stable equilibrium 
(see figure 1): 

CAcBj = 0 C B ( A )  = Cf = k t / a .  (3) 
For k -  = a we have an  indifferent equilibrium on the critical line so the proportions 

of reactant concentrations fluctuate freely (figure 2 ) .  
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c;= 2c; 
CA 

Figure 2. The phase diagram of the system for k -  = cy. 

Now we take into account local density fluctuations. In (1) we go over to the new 
variables 

z(V, t ) = C A ( r 7  t ) - C B ( r ,  t )  x ( r ,  t ) = C A ( r ,  t ) i C B ( r ,  t ,  (4) 

(5a )  

(5b) 

and  obtain 

Z ( V ,  t )=Az( r ,  t ) + z ( r ,  t ) - z ( r ,  t ) x ( r ,  t )  

L( r, t ) = AZ( U, t ) + Z ( V, t ) - ( k -  + (Y ) ( 2  CY )-‘E’( r, t ) + ( k -  - CY ) (  CY ) - I  z*( r, t ) , 

Here the coordinates are expressed in units ( D /  k+)”* ,  the time t in units ( k + ) - ’  
and the densities in units c;. 

The diffusion and density fluctuations have little effect on the initial stage-the 
relaxation to the formal equilibrium state cA = C~ = cT. But as can be seen from (5), 
the corresponding homogeneous solution is unstable with respect to small long-wave 
perturbations. With the help of the methods proposed by Balagurov and  Vaks (1973), 
Ovchinnikov and Zeldovich (1978) and Toussaint and  Wilczek (1983) one can show 
that the local equilibrium state, characterised by 

C ( r ,  t )  = Iz(r, t)l ( 6 )  
is reached after a period of time T’ = In( c o a d k + a - ’ ) .  In this state the system is formed 
of domains of varying sizes, each consisting of only one type of particle. In the narrow 
layer at the domain wall equation (6) is violated, but for k -  >> CY the non-linear term 
in (5) (transformed with the help of (6)) is much smaller than the linear term in a 
larger layer, so the use of (6) in the whole space would not lead to appreciable 
discrepancies. For the stationary regime in one dimension, integration in ( 5 a )  and (6) 
can be performed to give 

(dz/dx)‘= F ( z )  F ( 2 )  = 31.1~ - z*+ p O S p G f .  (7) 
Here p is an arbitrary integration constant that determines the cluster size 

L = [ F (  z)]-”’ dz 

and z, is the maximum value of the density in the cluster, defined by the equation 
F (  z,) = 0. 
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As p + f ,  the size of the cluster tends to infinity. For large clusters we have 
p =i -A ,  A<< 1, and 

The flow v' through the border of an equilibrium cluster is larger for large clusters, 
so big domains would absorb the smaller ones. For a large quasi-equilibrium cluster, 
contacting with an infinite cluster, we have 

d z k / d t = W 2 - f .  

This equation gives an  estimate for the lifetime of a domain of size L 

T ( L )  = exp(2L) (10) 

that corresponds to the logarithmic growth of the mean cluster size. Systems of higher 
dimensionality have a more complicated structure; the estimate ( lo) ,  however, remains 
valid because the particle density reaches its stationary value in a thin layer at the 
boundary, which can be considered flat if L >> 1. Average concentrations of A and B 
particles in the metastable system equal c;/2, which exceeds the mean-field value c: 
significantly. 

So, if the initial concentrations of the reactants are equal, a long-living mozaic 
distribution of the two types of particles is formed. But if at t = 0 the concentrations 
differ significantly, say, c i  >> c l ,  while the reproduction and recombination rates remain 
symmetric, the less numerous component vanishes and  the concentration of the other 
reaches its stationary value. At the final stage of the relaxation the concentration can 
be estimated with the help of the method of optimal fluctuation (Balagurov and Vaks 
1973, Ovchinnikov and  Zeldovich 1978, Berezhkovskii et a1 1986). We consider the 
survival probability of A particles in a spherical area initially containing no traps. For 
the Poisson initial distribution the probability of the formation of such a cavity depends 
on its volume exponentially and its lifetime is determined by ( lo) ,  so the concentration 
of the vanishing component can be obtained by integration over the size distribution 
of these cavities: ,. 

c A ( t )  = k + a - ' c i  d r  exp[-c$V- t exp(-2rJk t /D)] .  (11) J 
Calculation by the method of steepest descent leads to power-law asymptotics, 

d = l  (12a)  

which differ radically from exponential mean-field results: 
c A ( t + a 3 )  - t - ( ~ ; / 2 ) ( D / h + ) ' ' ~  

The exponents in (12a)-(12c) are not universal. 
Now consider the non-symmetric case when particles A annihilate with diffusing 

and non-self-reproducing traps B ( k l ,  a2 = 0). When the trap concentration is 
sufficiently high c i  >> c", k'/ k-, the mean-field-like solution forecasts an exponential 
vanishing of the concentration of type A particles. Let us take into account density 
fluctuations. For the Poissonian initial distribution there would always occur with a 
small probability such areas where the density of A particles is anomalously high, and  
there are no traps. In three dimensions the flow of particles out of a spherical cavity 
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of radius R >> ( D /  k’) where reproduction and recombination of A particles takes 
place is equal to 47rDR2cT(k+/3D)’” (see (9)). The maximum flow of traps onto the 
absorbing sphere is 47rDRci so, if the radius of the cavity exceeds R,=  
( c ~ / c $ ) ( 3 D / k + ) ” * ,  the ‘out’ flow of particles exceeds the ‘in’ flow of traps. Then the 
size of these fluctuation areas grows with time. The probability of finding spherical 
cavities of the critical radius is defined by 

In P(R,)  = - 4 ~ R ~ ( c ~ ) ~ / 3 ~ ~ .  

So, in systems with slow reproduction, recombination and annihilation of particles 
on non-ideal diffusing traps on the first stage the concentration of the particles falls 
exponentially to the low value c,P(R,) and then, after a long period of time, that is 
larger than P-’( R J ,  the particle density grows to the equilibrium value c ? ,  while the 
trap concentration vanishes. 
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